Chirurgie thoracique · Vol. 20 Décembre 2016

ECMO pour défaillance primaire du greffon grade 3 après transplantation pulmonaire : résultats à moyen et long termes

décembre 8, 2016
Auteur correspondant : Jocelyn Bellier

Jocelyn Bellier1*, Pierre Lhommet1, Pierre Bonnette1, Philippe Puyo1, Morgan Le Guen2, Antoine Roux3, Édouard Sage1, Alain Chapelier1, groupe de transplantation Foch

 

1. Service de chirurgie thoracique et transplantation pulmonaire, hôpital Foch, Suresnes.

2. Service d’anesthésie-réanimation, hôpital Foch, Suresnes, France.

3. Service de pneumologie, hôpital Foch, Suresnes, France.

Correspondance : j.bellier@hopital-foch.org

 


Résumé

Objectif : évaluer l’impact sur la survie et la fonction pulmonaire de la mise en place d’une ECMO pour défaillance primaire du greffon après transplantation pulmonaire.

Méthode : il s’agit d’une étude rétrospective mononcentrique incluant les patients transplantés au sein de l’hôpital Foch de janvier 2007 à décembre 2013.

Résultats : deux cent sept patients ont été transplantés durant cette période. Les patients étaient majoritairement des hommes (54,4 %). L’âge médian était de 39 ans et la principale pathologie était la mucoviscidose (52,9 %). Une ECMO pour DPG a été nécessaire dans 24 cas (11,7 %). La mortalité à 3 mois dans le groupe ECMO était de 50 %. À long terme, la survie ne semblait pas influencée par une DPG nécessitant une ECMO. Le VEMS et la CV étaient statistiquement diminués chez ces patients, notamment ceux souffrant de fibrose.

Conclusion : l’ECMO VA semble être un outil adapté à la prise en charge de DPG sévère après transplantation pulmonaire. La DPG sévère nécessitant une ECMO présente une mortalité initiale augmentée mais, à long terme, la survie est comparable aux autres patietns. Ni la fonction pulmonaire, ni le rejet chronique ne semblaient liés à la nécessité d’une ECMO pour DPG réfractaire.

 

Abstract

Objective: To evaluate the impact on survival and lung function of ECMO for primary graft dysfunction (PGD) after lung transplantation.

Method: This is a retrospective and monocentric study including patients transplanted in the Foch Hospital from January 2007 to December 2013.

Results: Two hundred and seven patients were transplanted during this period. Patients were predominantly men (54.4%). The median age was 39 years and the main pathology was cystic fibrosis (52.9%). ECMO for PGD was mandatory in 24 cases (11.7%). Mortality at 3 months in the ECMO group was 50%. However, long-term survival was not influenced by PGD with ECMO. FEV and CV were statistically reduced for patients with PGD requiring ECMO, especially those suffering from fibrosis.

Conclusion: VA ECMO seems to be a suitable tool for management of PGD after lung transplantation. Patients with severe PGD requiring ECMO have an increased initial mortality; however, long-term survival is comparable to other patients. Lung function or chronic rejection does not appear related to refractory PGD requiring ECMO.


 

1. INTRODUCTION

En transplantation pulmonaire (TP), la défaillance primaire du greffon (DPG) est la complication postopératoire la plus fréquente. La DPG a été classée en 3 grades par l’International Society of Heart and Lung Transplantation (ISHLT) [1] selon des critères gazométriques, radiologiques et la présence d’une assistance extracorporelle postopératoire. Sa forme la plus grave, dite de grade 3, peut atteindre une incidence de 25 % et une mortalité de 50% [2]. Dans ces formes sévères, l’Extra Corporeal Membrane Oxygenation (ECMO) représente un outil thérapeutique efficace et innovant comme en attestent des études récentes [3-5]. Bien que les résultats à court terme soient encourageants, les conséquences sur la survie et la fonction pulmonaire à long terme des DPG grade 3 sévères sous assistance extracorporelle sont encore assez peu connues.

Ce travail a pour objectif d’étudier la survie et la fonction pulmonaire chez les patients dont la DPG a nécessité la mise en place d’une ECMO.

 

2. PATIENTS ET MÉTHODES

 

2.1. Méthodologie de l’étude

Toutes les TP réalisées à l’hôpital Foch de Suresnes de janvier 2007 à décembre 2013 ont été répertoriées. Les données ont été rétrospectivement colligées à partir des dossiers médicaux tenus à jour de façon prospective. Le recueil des données a été mis à jour jusqu’en mars 2015. Ont été exclus les patients transplantés cœur-poumons, les patients transplantés en « super urgence » [6], les patients dont les greffons ont bénéficié d’une réhabilitation ex-vivo [7] et les patients retransplantés. Ont été inclus tous les patients ayant bénéficié d’une transplantation monopulmonaire (TMP) ou transplantation bipulmonaire (TBP) et les patients ayant bénéficié d’une TBP combinée à une transplantation rénale ou hépatique.

Les pathologies pulmonaires ont été définies comme suit :

  • Groupe M : patients atteints de mucoviscidose ou dilatation de bronches.
  • Groupe E : patients présentant un emphysème post-tabagique ou déficitaire en lpha-1 antitrypsine.
  • Groupe F : patients présentant une fibrose et des pathologies rares telles que la lymphangioléiomyomatose, la maladie des cils immobiles et l’atteinte pulmonaire des réactions « hôte contre greffe » après allogreffe de moelle osseuse.

Les patients ont été répartis en 3 groupes selon le grade de DPG et la présence d’une ECMO postopératoire :

  • Groupe 1 : patient présentant une DPG grade 0 à 2.
  • Groupe 2 : patient présentant une DPG grade 3 sans ECMO.
  • Groupe 3 : patient présentant une DPG grade 3 avec ECMO.

 

2.2. Technique chirurgicale

Les transplantations bipulmonaires étaient réalisées comme décrit par Bisson et Bonnette [8] : une implantation séquentielle par thoracotomie antérolatérale. La mise en place d’une assistance extracorporelle n’était pas systématique mais était discutée au cas par cas en préopératoire ou mise en place en peropératoire en cas de nécessité hémodynamique et/ou ventilatoire.

 

2.3. ECMO

L’assistance VA fémorale a été placée par voie chirurgicale et le bon positionnement de la canule veineuse a été vérifié par échographie transœsophagienne et radiographique. Le circuit d’ECMO comportait une pompe centrifuge (Rotaflow®, Maquet, Wayne, New Jersey, États-Unis), des canules préhéparinées (HLS®, Maquet, Wayne), un oxygénateur (PLS®, Maquet, Wayne, NJ) et un circuit préhépariné (Maquet, Wayne).

 

2.4. Données     

Les paramètres préopératoires incluaient l’âge, le sexe, le poids, la taille, l’indice de masse corporel (IMC), le temps d’attente sur liste (en jours) et le groupe de pathologies amenant à l’insuffisance respiratoire.

Les paramètres peropératoires comportaient le type de TP, les durées d’ischémie, le nombre de culots globulaires transfusés en peropératoire.

Enfin les données postopératoires comprenaient la survenue d’une DPG et son grade, la durée de séjour en réanimation et d’hospitalisation, la durée de ventilation, la mesure du volume expiratoire maximum seconde (VEMS) en pourcentage du VEMS théorique à 6 mois, 1 an et 2 ans (VEMS 6, VEMS 12 et VEMS 24), la mesure de la capacité vitale (CV) en pourcentage de la CV théorique à 6 mois, 1 an et 2 ans (CV 6, CV 12 et CV 24), la survenue d’une dysfonction chronique (chronic lung allograft dysfunction [CLAD]) et la survie.

 

2.5. Statistiques

Les analyses statistiques ont été réalisées à l’aide du logiciel SPSS version 17 (SPSSTM Inc., Chicago, IL, États-Unis). Les variables continues sont décrites sous la forme de moyenne ± écart type ou de leur médiane [minimum ; maximum]. Les variables qualitatives le sont par la fréquence de chaque classe. En cas d’effectifs inférieurs à 5, un regroupement de classe a été réalisé. Chaque variable a été analysée séparément. La normalité de distribution de chaque variable continue a été évaluée par le test de Shapiro-Wilk. La comparaison entre les variables continues a été réalisée par le test T de Student ou par l’analyse de la variance selon le nombre de groupes. En l’absence de normalité de la distribution, les tests de Mann-Whitney et de Kruskal-Wallis ont été utilisés. Le lien entre deux variables qualitatives a été étudié par le test de Chi 2. La survie est exprimée par la moyenne en mois avec son intervalle de confiance à 95 % et a été analysée selon la méthode Kaplan-Meier avec une comparaison des courbes de survie par le test du Log-rank. Une analyse uni puis multivariée selon Cox a été effectuée après vérification de l’hypothèse des risques proportionnels. Si cette hypothèse n’était pas réalisée, un découpage temporel était réalisé. Pour les analyses multivariées, un seuil de significativité inférieure à 20 % était requis. La significativité des tests était retenue pour un p < 5 %.

 

3. RÉSULTATS

 

3.1. Descriptif de la cohorte

Au total, la cohorte inclut 206 patients. La majorité des patients était des hommes (n = 112, 54,4 %), l’âge moyen médian était de 39 ans [17 ; 65]. La moitié des patients présentait une mucoviscidose ou une dilatation de bronches (n = 109, 52,9 %). La médiane de durée d’attente sur liste était de 39,5 jours [1 ; 442]. Le tableau 1 résume les caractéristiques globales de la cohorte de patients.

 

Tableau 1. Caractéristiques globales de la cohorte.

Paramètres Médiane [min ; max]
Âge (années) 39 [17 ; 65]
Poids (kg) 53 [32 ; 95]
IMC (kg.m²) 19,3 [13,3 ; 36,6]
Temps attente (j) 39,5 [1 ; 442]
N %
Sexe                   H/F 112/94 54,4/45,6
Pathologies Groupe M 109 52,9
Groupe E 52 25,2
Groupe F 45 21,8

 

Il s’agissait d’une TBP chez 182 patients (85,4 %) et d’une TMP chez 24 patients (11,7 %), bipulmonaire. La TBP était combinée à une transplantation rénale chez 4 patients et combinée à une transplantation hépatique chez 2 patients. La transfusion de concentrés globulaires moyenne était de 5,4 unités (± 4,1). La durée moyenne d’ischémie était de 245 min (± 71,2) pour le 1er greffon et de 352 min (± 79,3) pour le 2e greffon.

L’assistance postopératoire faisait suite à une assistance peropératoire dans 19 cas et a été instaurée en postopératoire dans 5 cas. Une DPG de grade 3 survenait dans 47 cas dont 24 (51,1 %) ont nécessité la mise en place ou le maintien d’une ECMO [tableau 2].

L’ECMO postopératoire pour DPG était veinoartérielle chez 23 patients (95,8 %) et veinoveineuse dans 1 cas (4,2 %), celle-ci faisait suite à une assistance centrale peropératoire. Parmi ces patients, 12 (50 %) appartenaient au groupe F, 9 (37,5 %) au groupe M et 3 (12,5 %) au groupe E. La présence d’une ECMO pour DPG était significativement plus fréquente dans le groupe Fibrose (p = 0,001). La transplantation était monopulmonaire dans 7 cas et bipulmonaire dans 17 cas.

 

Tableau 2. Classement des DPG.

DPG N % Groupe DPG Définition N %
0 27 13,1 1 DPG < 3 159 77,2
1 75 36,4
2 57 27,7
3 47 22,8 2 DPG 3 sans ECMO 23 11,2
3 DPG 3 avec ECMO 24 11,7

 

3.2. Durée de ventilation invasive

Sur l’ensemble de la cohorte, 87 patients (42,2 %) ont pu être extubés au bloc opératoire. Pour les 119 patients (57,8 %) restants, la médiane de durée de ventilation invasive était de 7 jours [0,5 ; 270]. Dans le groupe de pathologie M, la durée médiane de ventilation invasive était de 6 jours [0,5 ; 270]. Elle était de 7 jours [0,5 ; 39] dans le groupe E et de 25 jours [1 ; 144] dans le groupe F. Le groupe F avait une durée de ventilation invasive significativement plus longue que les 2 autres groupes de pathologie (p = 0,005 et p = 0,023). Ces derniers avaient des durées de ventilation comparable (p = 0,579).

Dans le groupe 1, la durée médiane de ventilation invasive était de 3 jours [0,5 ; 270]. Elle était de 19 jours [5 ; 69] dans le groupe 2 et de 23 jours [1 ; 144] dans le groupe 3. La durée de ventilation invasive significativement plus courte dans le groupe 1 que dans les 2 autres groupes de DPG (p = 0,0001). Les durées de ventilation invasive étaient comparables dans les groupes 2 et 3 (p = 0,623).

 

3.3. Durée du séjour en réanimation

La durée médiane du séjour en réanimation de la population globale était de 7 jours [2 ; 132]. Elle était de 6 jours [2 ; 72] dans le groupe M, de 7 jours [2 ; 33] dans le groupe E et de 17 jours dans le groupe F. La durée de séjour en réanimation était significativement plus longue dans le groupe F que les 2 autres groupes (p < 0,0001 et p = 0,001). Les durées de séjour en réanimation des groupes M et E étaient comparables (p = 0,476). La durée médiane de séjour en réanimation était respectivement de 6 jours [2 ; 43] dans le groupe 1, de 16 jours [6 ; 72] dans le groupe 2 et de 31 jours [5 ; 132] dans le groupe 3. La durée de séjour en réanimation était significativement plus longue selon la gravité croissante du groupe de DPG (p < 0,0001).

 

3.4. Durée d’hospitalisation

La durée médiane d’hospitalisation de la population globale était de 22 jours [2 ; 377]. La durée médiane d’hospitalisation était de 18 jours [2 ; 125] dans le groupe M. Elle était de 23 jours dans le groupe E et 38 jours [9 ; 175] dans le groupe F. La durée d’hospitalisation était significativement plus longue pour le groupe F (p = 0,021 et p < 0,0001). Les groupes M et E avaient des durées d’hospitalisation comparables (p = 0,099). Dans le groupe 1, la durée médiane d’hospitalisation était de 20 jours [2 ; 377] contre 25 jours [3 ; 116] dans le groupe 2 et 33 jours [11 ; 130] dans le groupe 3. Seule la durée d’hospitalisation entre les groupes 1 et 3 différait significativement avec une hospitalisation plus longue pour le groupe 3 (p = 0,018).

 

3.5. Morbidité et survie

Sur l’ensemble de la cohorte, 162 patients (78,3 %) ont présenté au moins une complication [tableau 3]. La morbidité directement imputable à la présence d’une ECMO concernait 14 patients sur les 24 (58,3 %) pour lesquels une assistance postopératoire a été utilisée. Les principales complications dues à la présence d’une ECMO étaient une ischémie du membre inférieure dans 3 cas avec embolectomie chez 2 patients et une aponévrotomie de décharge pour syndrome des loges chez un patient, d’une thrombose veineuse dans 4 cas, un choc hémorragique dans 3 cas, une lymphorhée dans 2 cas, un hématome de la cuisse dans un cas et un hématome rétropéritonéal avec embolisation dans 1 cas chacun.

 

Tableau 3. Complications postopératoires.

Complications N %
Pneumopathie 87 42,2 %
Parésie/paralysie phrénique 22 10,7 %
Hémothorax avec réintervention 11 5,3 %
Choc septique 15 7,3 %
Accident vasculaire cérébral 9 4,4 %
Complications digestives 6 2,9 %
Complications ECMO 14/24 58,3 %

 

La survie globale moyenne était estimée à 71,1 mois (IC à 95 % [65,6 ; 76,7]). Les taux de survie à 1 an, 3 ans et 5 ans étaient respectivement de 77 %, 72 % et 71 %.

La survie était statistiquement différente selon les groupes de pathologie. La survie moyenne était de 83,3 mois (IC à 95% [77,4 ; 89,2]) pour le groupe M. Elle était de 67,8 mois (IC à 95% [56,3 ; 79,3]) pour le groupe E et de 42,9 mois (IC à 95% [30,9 ; 55]) pour le groupe F (p < 0,0001) [figure 1].

 

Figure 1. Courbe de survie selon le groupe de pathologie par la méthode de Kaplan-Meier avec test du log-rank.
Figure 1. Courbe de survie selon le groupe de pathologie par la méthode de Kaplan-Meier avec test du log-rank.

 

La mortalité à 3 mois était respectivement de 11 % dans le groupe 1 de DPG, 9 % dans le groupe 2 de DPG et de 50 % dans le groupe 3 de DPG. La moyenne de survie était de 75,4 mois (IC à 95 % [69,4 ; 81,3]) dans le groupe 1 de DPG, 65,5 mois (IC à 95 % [48,8 ; 82,2]) dans le groupe 2 et 45,1 mois (IC à 95 % [27,5 ; 62,7]) dans le groupe 3 (p = 0,002) [figure 2]. Le tableau 4 compare les survies selon les paramètres prédéfinis. Six paramètres influençaient la survie globale : l’âge, la pathologie pulmonaire, le type de transplantation, le groupe de DPG et la survenue d’une CLAD. Les mêmes analyses ont été réalisées en imposant une survie conditionnelle supérieure à 3 mois. Celles-ci montraient la persistance de l’influence de paramètres tels que la pathologie pulmonaire sous-jacente, le type de transplantation et la survenue d’une CLAD. Mais ni la présence d’une assistance, ni le groupe de DPG n’influençaient encore la survie.

 

Figure 2. Courbe de survie selon le groupe de DPG par la méthode de Kaplan-Meier avec test du log-rank.
Figure 2. Courbe de survie selon le groupe de DPG par la méthode de Kaplan-Meier avec test du log-rank.

 

Tableau 4. Comparaisons de la survie selon la méthode de Kaplan-Meier avec test du log-rank pour la survie globale et la survie conditionnelle à 3 mois.

Paramètres Survie globale IC à 95 % p Survie conditionnelle à 3 mois IC à 95 % p
Sexe F 73,2 [65,2 ; 81,3] 0,529 77,8 [70,9 ; 84,7] 0,056
H 69,5 [61,9 ; 77,1] 86,9 [81,1 ; 92,8]
Âge < 40 ans 77,6 [70,7 ; 84,5] 0,013 85,3 [79,6 ; 90,9] 0,092
> 40 ans 63,5 [54,8 ; 72,3] 77 [69,1 ; 84,9]
Pathologies M 83,3 [77,3 ; 89,2] <0,0001 87,3 [82,1 ; 92,4] 0,001
E 67,8 [56,3 ; 79,3] 81,8 [72,2 ; 91,4]
F 42,9 [30,9 ; 55] 60,1 [47,3 ; 72,9]
Transplantation Mono P 42,1 [24,6 ; 59,6] <0,0001 67 [48 ; 86] 0,029
Bi P 75,4 [69,9 ; 80,9] 83,6 [78,9 ; 88,3]
Transfusion < 5 CG 71,3 [64,3 ; 78,4] 0,848 79,5 [73,2 ; 85,8] 0,268
peropératoire >5 CG 70,8 [61,8 ; 79,8] 85,5 [78,6 ; 92,3]
Ischémie < 245 min 72,3 [64,5 ; 80,1] 0,612 83,1 [76,7 ; 89,5] 0,5
1er côté > 245 min 69,9 [61,2 ; 77,8] 80,4 [73,5 ; 87,3]
Ischémie < 352min 71,3 [63,1 ; 79,5] 0,163 80,9 [73,9 ; 88,1] 0,321
2e côté > 352 min 79,8 [72,6 ; 86,9] 86,4 [80,4 ; 92,3]
DPG Gr 1 75,4 [69,4 ; 82,2] 0,002 82 [76,8 ; 87,2] 0,119
Gr 2 65,5 [48,8 ; 82,2] 71,7 [55,8 ; 87,6]
Gr 3 45,1 [27,5 ; 62,7] NC NC

 

Un modèle de Cox univarié [tableau 5] a été réalisé avec les mêmes variables. L’hypothèse des risques proportionnels étant proche de la significativité (p = 0,078) pour la variable « groupe de DPG », un groupement temporel a été effectué à 3 mois. Dans les 3 premiers mois, le groupe 3 de DPG présentait un risque relatif de décès de 3,921 ([1,275 ; 12,059], p = 0,0172) plus élevé que les 2 autres groupe de DPG.

Après le test de plusieurs modèles de Cox multivariés, 2 facteurs pronostiques de la survie ont été identifiés : le groupe de pathologie F par rapport aux groupes M et E avec un RR de 4,824 (IC à 95 % [1,506 ; 15,458], p = 0,008) et la survenue d’une CLAD avec un RR de 6,284 (IC à 95 % [2,485 ; 15,881], p < 0,0001).

 

Tableau 5. Modèles de Cox univariés des paramètres étudiés.

Paramètres RR IC à 95 % p HRP
Sexe féminin 0,845 [0,496 ; 1,439] 0,535 0,127
Âge 1,03 [1,01 ; 1,05] 0,003 0,509
Pathologie F 2,281 [1,664 ; 3,125] < 0,0001 0,6
Greffe bipulmonaire 0,318 [0,178 ; 0,568]] 0,0001 0,276
Transfusion > 5CG 1,053 [0,616 ; 1,801] 0,849 0,128
Groupe DPG 1,447 [1,095 ; 1,912] 0,0093 0,078
Gr 3 versus 1 & 2 2,8 [1,475 ; 5,315] 0,0016 0,001
Dans les 3 premiers mois 3,921 [1,275 ; 12,059] 0,0172 NC
Après les 3 premiers mois 1,269 [0,723 ; 2,227] 0,407 NC
CLAD 6,465 [2,608 ; 16,025] < 0,0001 0,115

 

3.6. Évaluation de la fonction pulmonaire

 

3.6.1. Volume expiratoire maximal seconde

Les VEMS à 6 mois, 1 an et 2 ans dans la population d’étude étaient de 73,4 % (± 22,4), 77,6 % (± 21,4) et 78,1 % (± 24,3). Une analyse par ANOVA a permis de trouver une différence significative entre ces valeurs avec une augmentation de la valeur moyenne de VEMS à 1 an stable lors de la mesure à 2 ans [figure 3].

 

Figure 3. Évolution des VEMS en fonction du temps.
Figure 3. Évolution des VEMS en fonction du temps.

 

Les VEMS à 6 mois, 1 an et 2 ans étaient respectivement de 76,4 % (± 20,6), 80 % (± 20,4) et 80,3 % (± 24,3) pour le groupe M, 73,6 % (± 24,5), 77,5 % (± 22,5) et 79,2 % (± 24,4) pour le groupe E et de 58,4 % (± 23,4), 65,2 % (± 21,7) et 65,2 % (± 21,6) pour le groupe F [figure 4].

 

Figure 4. VEMS postopératoires selon le groupe de pathologie pulmonaire.
Figure 4. VEMS postopératoires selon le groupe de pathologie pulmonaire.

 

Nous avons pu mettre en évidence une différence significative du VEMS plus faible dans le groupe F par rapport au groupe M (p = 0,002). Les autres comparaisons ne sont pas significatives (p = 1 et p = 0,116).

Les VEMS moyens à 6 mois, 1 an et 2 ans étaient de 75,3 % (± 22), 79,5 % (± 21,5) et 80,4 % (± 24,1) dans le groupe 1. Ils étaient de 69,1 % (± 23,2), 72,2 % (± 20,8) et 71,7 % (± 26,3) dans le groupe 2 contre 58,3 % (± 20,3), 65,3 % (± 17,9) et 64,1 % (± 18,5) dans le groupe 3 [figure 5]. Aucune différence significative n’a été mise en évidence entre ces 3 groupes.

 

Figure 5. VEMS selon le groupe de DPG.
Figure 5. VEMS selon le groupe de DPG.

 

3.6.2. Capacité vitale

La CV dans la population d’étude à 6 mois, 1 an et 2 ans étaient de 78,6 % (± 20,1), 84,5 % (± 20,5) et 87,9 % (± 21,8). L’analyse a permis de mettre en évidence une différence significative entre ces valeurs avec une augmentation de la valeur moyenne de CV de 6 mois à 2 ans [figure 6].

 

Figure 6. Évolution de CV au cours du temps.
Figure 6. Évolution de CV au cours du temps.

 

Les CV moyennes à 6 mois, 1 an et 2 ans étaient de 79,9 % (± 18), 85,1 % (± 18,3) et 88,3 % (± 18,8) dans le groupe M. Elles étaient de 82,3 % (± 21), 89,6 % (± 21,9) et 95,6 % (± 23,9) dans le groupe E et 64,6 % (± 23,1), 70,8 % (± 23) et 70,7 % (± 23,2) dans le groupe F. Une analyse par ANOVA a permis de trouver une différence significative entre le groupe M et le groupe F (p = 0,008) et entre le groupe E et le groupe F (p = 0,002) [figure 7].

 

Figure 7. Capacité vitale selon la pathologie pulmonaire.
Figure 7. Capacité vitale selon la pathologie pulmonaire.

 

Les CV à 6 mois, 1 an et 2 ans dans le groupe 1 de DPG étaient 80,4 % (± 20,1), 75,6 % (± 17,7) et 63,2 % (± 17,3) versus 86,2 % (± 20,8), 81,1 % (± 16,8) et 70,2 % (± 17,3) dans le groupe 2 et 89, 8 % (± 22,1), 84,7 % (± 17,1) et 72,4 % (± 19,5) dans le groupe 3. Une analyse par ANOVA a permis de mettre en évidence des différences significatives entre les groupes 1 et 3 de DPG (p = 0,032) [figure 8].

 

Figure 8. Capacité vitale selon le groupe de DPG.
Figure 8. Capacité vitale selon le groupe de DPG.

 

3.6.3. Dysfonction pulmonaire chronique

Les données de dysfonction pulmonaire chronique après transplantation (CLAD) étaient disponibles chez 164 patients (79,6 %). Une CLAD était survenue dans 39 cas (23,8 %) : 31/133 (23,3 %) cas dans le groupe 1 de DPG, 5/20 (25 %) dans le groupe 2 de DPG et 3/11 (27, 3%) dans le groupe 3 de DPG. Le tableau 6 regroupe les comparaisons de survenue d’une CLAD.

 

Tableau 6. Répartition de la survenue d’une CLAD.

Paramètres CLAD p
Non Oui
Sexe H 64 (39 %) 25 (15,2 %) 0,109
F 61 (37,2 %) 14 (8,6 %)
Pathologies M 80 (48,8 %) 19 (11,6 %) 0,182
E 24 (14,6 %) 12 (7,3 %)
F 21 (12,8 %) 8 (4,9 %)
DPG Gr 1 102 (76,6 %) 31 (23,3%) NC*
Gr 2 15 (75 %) 5 (25 %) NC*
Gr 3 8 (72,7 %) 3 (27,3 %) NC*

NC : non calculable.

 

4. DISCUSSION

La DPG est la principale cause de mortalité immédiate après TP [9] et ce malgré les progrès constants dans la compréhension de ces mécanismes physiopathologiques [10]. À l’image du syndrome de détresse respiratoire aiguë [11], la prise en charge des DPG est essentiellement symptomatique et s’appuie sur les principes de la ventilation protectrice. Malgré ceux-ci, certains patients vont présenter une DPG échappant aux traitements conventionnels pour lesquels l’utilisation d’une ECMO représente un outil thérapeutique de recours. Ainsi, la place de l’ECMO dans la DPG pulmonaire est de plus en plus proposée par les équipes de transplantation [3,4,12-15], preuve de l’intérêt croissant pour cette technique.

Dans notre série, l’ECMO a été utilisée comme traitement de recours chez des patients présentant une DPG réfractaire. La mortalité après TP est largement influencée par la survenue d’une DPG et notamment une DPG requérant une ECMO avec un risque relatif de décès de 3,9 (IC à 95 % [1,275 ; 12,059]) dans les 3 premiers mois. Cette lourde mortalité à 3 mois (50 %) témoigne de la gravité de la défaillance pulmonaire. Dans leur série, Christie et al. [16] rapportaient une mortalité de 63,3 % à 1 mois, elle était de 100 % dans celle d’Oto et al. quand une assistance extracorporelle n’était pas mise en place [4]. Les patients avec une DPG grade 3 avec ECMO survivant à la période critique des 3 premiers mois ont une survie à long terme similaire aux 2 autres groupes de DPG, confirmant ainsi les résultats de Mason et al. [13]. Ces résultats confortent notre attitude thérapeutique quant à la mise en place d’une ECMO pour DPG réfractaire. La survie à long terme était influencée par deux paramètres déjà mentionnés dans la littérature : la fibrose pulmonaire comme étiologie d’insuffisance respiratoire [17] et la survenue d’une CLAD [18].

Le type d’ECMO (VA versus VV) n’est pas consensuel [4,13,15] et nous avons pris le parti d’une assistance postopératoire par une ECMO VA périphérique car elle présente plusieurs avantages dans notre pratique. En effet, l’utilisation en VA offre un support à la fois hémodynamique et respiratoire optimal. L’ECMO est utilisée comme assistance avec un débit de l’ordre de 50 % du débit théorique du patient permettant ainsi de limiter le risque d’ischémie chaude des greffons et de syndrome d’Arlequin. Une utilisation de ce type diminue la reperfusion pulmonaire [19] et les contraintes de la ventilation mécanique permettant un traitement étiologique du syndrome d’ischémie/reperfusion. Cependant pour Hartwig et al. [5], l’ECMO VA serait plus pourvoyeuse de complications infectieuses, notamment fongiques, et d’accidents cérébraux que l’ECMO VV, ce que nous n’avons pas observé dans notre série.

Dans plusieurs études [5,16,20], la survenue d’une DPG était associée à une baisse de la fonction respiratoire à court et long termes. Cependant, cette constatation n’était pas univoque. Ainsi, dans une série de 58 patients, Bermudez et al. [14] n’avaient pas retrouvé de différence de fonction pulmonaire à long terme entre les patients ayant DPG avec ECMO par rapport aux patients avec une DPG sans assistance. De même, Dahlberg et al. [21] n’avaient pas montré de baisse significative du VEMS chez les patients ayant eu besoin d’une ECMO postopératoire pour DPG. Dans notre série, la survenue d’une DPG avec ECMO postopératoire n’est pas associée à une baisse significative du VEMS à long terme confirmant ainsi ces deux travaux [14,21]. Cependant, on constate une diminution significative de la CV chez les patients avec une DPG grade 3 avec ECMO. Cette observation peut être expliquée par la proportion plus importante de fibrose (50 %) dans ce groupe où l’utilisation de greffons plus petits ou réduits chirurgicalement est plus fréquente [22]. De plus, le VEMS est significativement plus bas dans le groupe F par rapport aux autres groupes de pathologie. La mesure du VEMS se basant sur des critères morphologiques du receveur, cette diminution pourrait être également en partie expliquée par des biais de mesures pour les mêmes raisons d’adaptation de taille donneur/receveur.

La CLAD, et sa traduction spirométrique la bronchiolite oblitérante (BOS), est pour beaucoup favorisée par une DPG [16,23,24] avec un risque relatif de 5 [25] de présenter une BOS de grade 3 (cf. annexes). Cependant, les facteurs de dégradation de la fonction à long terme sont multiples comprenant l’immunité [26], les infections pulmonaires, le rejet aigu ou encore le reflux gastro-œsophagien [27,28]. Dans notre cohorte, 23,8 % des patients présentent une CLAD soit une incidence de 31,9 % à 5 ans. La survenue d’une dysfonction chronique du greffon ne semblait pas être influencée par l’un des paramètres étudiés, notamment la survenue d’une DPG ou son intensité.

La nature rétrospective de l’étude ainsi que le faible nombre de patients avec une ECMO pour DPG induisent des biais de sélection et de suivi des patients. De plus, cette cohorte a également pour particularité d’avoir une majorité de patients (52,9 %) présentant une mucoviscidose, ce qui est une étiologie de TP plus fréquente que dans d’autres séries [29]. Ces éléments limitent donc son interprétation.

 

5. CONCLUSION

L’ECMO VA est donc une technique d’assistance adaptée à la prise en charge des DPG sévères après TP. Malgré une surmortalité observée dans les 3 premiers mois, les patients transplantés présentant une DPG réfractaire nécessitant une ECMO ont une survie à moyen et long termes superposable à celles des autres patients. En outre, l’utilisation d’une ECMO comme support à la DPG n’a que peu de retentissement sur la fonction pulmonaire à moyen et long termes et elle n’induit pas d’incidence accrue de survenue d’une CLAD.

 

ANNEXES

 

ANNEXE 1 : Classification de la DPG d’après Christie et al. [1].
ANNEXE 1 : Classification de la DPG d’après Christie et al. [1].
ANNEXE 2 : Classification de la CLAD selon l’évaluation du VEMS (FEV) d’après Estenne et al. [30].
ANNEXE 2 : Classification de la CLAD selon l’évaluation du VEMS (FEV) d’après Estenne et al. [30].

RÉFÉRENCES

  1. Christie JD, Carby M, Bag R, Corris P, Hertz M, Weill D et al. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part II: definition. A consensus statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2005;24:1454-9.
    https://doi.org/10.1016/j.healun.2004.11.049
  2. Lee JC, Christie JD. Primary graft dysfunction. Proc Am Thorac Soc. 2009;6:39-46.
    https://doi.org/10.1513/pats.200808-082GO
  3. Glassman LR, Keenan RJ, Fabrizio MC, Sonett JR, Bierman MI, Pham SM et al. Extracorporeal membrane oxygenation as an adjunct treatment for primary graft failure in adult lung transplant recipients. J Thorac Cardiovasc Surg 1995;110:723-727.
    https://doi.org/10.1016/S0022-5223(95)70104-4
  4. Oto T, Rosenfeldt F, Rowland M, Pick A, Rabinov M, Preovolos A et al. Extracorporeal Membrane Oxygenation after Lung Transplantation: Evolving Technique Improves Outcomes. Ann Thorac Surg 2004;78:1230-5.https://doi.org/10.1016/j.athoracsur.2004.03.095
  5. Hartwig MG, Walczak R, Lin SS, Davis RD. Improved Survival but Marginal Allograft Function in Patients Treated With Extracorporeal Membrane Oxygenation After Lung Transplantation. Ann Thorac Surg 2012;93:366-71.https://doi.org/10.1016/j.athoracsur.2011.05.017
  6. Orsini B, Sage E, Olland A, Cochet E, Tabutin M, Thumerel M et al. High-emergency waiting list for lung transplantation: early results of a nation-based study. Eur J Cardio-Thorac Surg 2014 ;46:e41-47; discussion e47.
  7. Sage E, Mussot S, Trebbia G, Puyo P, Stern M, Dartevelle P et al. Lung transplantation from initially rejected donors after ex vivo lung reconditioning: the French experience. Eur J Cardio-Thorac Surg 2014;46:794-9.
    https://doi.org/10.1093/ejcts/ezu245
  8. Bisson A, Bonnette P. A new technique for double lung transplantation. ‘Bilateral single lung’ transplantation. J Thorac Cardiovasc Surg 1992;103:40-6.
  9. Yusen RD, Christie JD, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI et al. The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Adult Lung and Heart-Lung Transplant Report–2013; focus theme: age. J Heart Lung Transplant 2013;32:965-78.
    https://doi.org/10.1016/j.healun.2013.08.007
  10. Carter YM, Gelman AE, Kreisel D. Pathogenesis, management, and consequences of primary graft dysfunction. Semin Thorac Cardiovasc Surg 2008;20:165-72.
    https://doi.org/10.1053/j.semtcvs.2008.04.005
  11. Conrad SA, Bidani A. Management of the acute respiratory distress syndrome. Chest Surg Clin N Am 2002;12:325-54.
    https://doi.org/10.1016/S1052-3359(02)00012-1
  12. Meyers BF, Sundt TM, Henry S, Trulock EP, Guthrie T, Cooper JD et al. Selective use of extracorporeal membrane oxygenation is warranted after lung transplantation. J Thorac Cardiovasc Surg 2000;120:20-8.
    https://doi.org/10.1067/mtc.2000.105639
  13. Mason DP, Boffa DJ, Murthy SC, Gildea TR, Budev MM, Mehta AC et al. Extended use of extracorporeal membrane oxygenation after lung transplantation. J Thorac Cardiovasc Surg 2006;132:954-60.
    https://doi.org/10.1016/j.jtcvs.2006.06.010
  14. Bermudez CA, Adusumilli PS, McCurry KR, Zaldonis D, Crespo MM, Pilewski JM et al. Extracorporeal Membrane Oxygenation for Primary Graft Dysfunction After Lung Transplantation: Long-Term Survival. Ann Thorac Surg 2009;87:854-60.
    https://doi.org/10.1016/j.athoracsur.2008.11.036
  15. Bittner HB, Lehmann S, Rastan A, Garbade J, Binner C, Mohr FW et al. Outcome of Extracorporeal Membrane Oxygenation as a Bridge to Lung Transplantation and Graft Recovery. Ann Thorac Surg 2012;94:942-50.
    https://doi.org/10.1016/j.athoracsur.2012.05.006
  16. Christie JD, Sager JS, Kimmel SE, Ahya VN, Gaughan C, Blumenthal NP et al. Impact of primary graft failure on outcomes following lung transplantation. Chest 2005;127:161-165.
    https://doi.org/10.1378/chest.127.1.161
  17. Titman A, Rogers CA, Bonser RS, Banner NR, Sharples LD. Disease-specific survival benefit of lung transplantation in adults: a national cohort study. Am J Transplant 2009;9:1640-9.
    https://doi.org/10.1111/j.1600-6143.2009.02613.x
  18. Christie JD, Edwards LB, Kucheryavaya AY, Aurora P, Dobbels F, Kirk R et al. The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult lung and heart-lung transplant report–2010. J Heart Lung Transplant 2010;29:110418.
    https://doi.org/10.1016/j.healun.2010.08.004
  19. Pereszlenyi A, Lang G, Steltzer H, Hetz H, Kocher A, Neuhauser P et al. Bilateral lung transplantation with intra- and postoperatively prolonged ECMO support in patients with pulmonary hypertension. Eur J Cardio-Thorac Surg 2002;21:85863.
    https://doi.org/10.1016/S1010-7940(02)00058-1
  20. Hartwig MG, Appel JZ, Cantu E, Simsir S, Lin SS, Hsieh C-C, et al. Improved Results Treating Lung Allograft Failure With Venovenous Extracorporeal Membrane Oxygenation. Ann Thorac Surg 2005;80:187280.
    https://doi.org/10.1016/j.athoracsur.2005.04.063
  21. Dahlberg PS, Prekker ME, Herrington CS, Hertz MI, Park SJ. Medium-term results of extracorporeal membrane oxygenation for severe acute lung injury after lung transplantation. J Heart Lung Transplant 2004;23:979-984.
    https://doi.org/10.1016/j.healun.2003.08.021
  22. Mitilian D, Sage E, Puyo P, Bonnette P, Parquin F, Stern M, et al. Techniques and results of lobar lung transplantations. Eur J Cardio-Thorac Surg 2014;45:365-369-370.
  23. Fiser SM, Tribble CG, Long SM, Kaza AK, Kern JA, Jones DR, et al. Ischemia-reperfusion injury after lung transplantation increases risk of late bronchiolitis obliterans syndrome. Ann Thorac Surg 2002;73:1041-1048.
    https://doi.org/10.1016/S0003-4975(01)03606-2
  24. Daud SA, Yusen RD, Meyers BF, Chakinala MM, Walter MJ, Aloush AA, et al. Impact of Immediate Primary Lung Allograft Dysfunction on Bronchiolitis Obliterans Syndrome. Am J Respir Crit Care Med 2007;175:507-13.
    https://doi.org/10.1164/rccm.200608-1079OC
  25. Huang HJ, Yusen RD, Meyers BF, Walter MJ, Mohanakumar T, Patterson GA et al. Late Primary Graft Dysfunction After Lung Transplantation and Bronchiolitis Obliterans Syndrome. Am J Transplant 2008;8:2454-62.
    https://doi.org/10.1111/j.1600-6143.2008.02389.x
  26. Bharat A, Kuo E, Steward N, Aloush A, Hachem R, Trulock EP, et al. Immunological link between primary graft dysfunction and chronic lung allograft rejection. Ann Thorac Surg 2008 ;86:189-195-197.
  27. Hachem RR, Trulock EP. Bronchiolitis obliterans syndrome: Pathogenesis and management. Semin Thorac Cardiovasc Surg 2004;16:3505.
    https://doi.org/10.1053/j.semtcvs.2004.09.011
  28. Lin CM, Zamora MR. Update on Bronchiolitis Obliterans Syndrome in Lung Transplantation. Curr Transplant Rep 2014;1:282-9.
    https://doi.org/10.1007/s40472-014-0030-9
  29. Kreisel D, Krupnick AS, Puri V, Guthrie TJ, Trulock EP, Meyers BF, et al. Short- and long-term outcomes of 1000 adult lung transplant recipients at a single center. J Thorac Cardiovasc Surg 2011;141:215-22.
    https://doi.org/10.1016/j.jtcvs.2010.09.009
  30. Estenne M, Maurer JR, Boehler A, Egan JJ, Frost A, Hertz M, et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant 2002;21:297-310.
    https://doi.org/10.1016/S1053-2498(02)00398-4

Conflit d’intérêt : aucun. / Conflict of interest statement: none declared.

Cet article est issu d’un mémoire de DESC.

Date de soumission : 18/09/2015. Acceptation : 20/09/2016. Pré-publication : 23/09/2016